skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, Matthew D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sleep is a reversible state, characterized by the inhibition of periodic behaviors that occur during waking hours. Caenorhabditis elegans demonstrates stress-induced sleep following exposure to environmental stressors, like noxious heat or ultraviolet irradiation. During this time, animals inhibit movement, feeding, and defecation, behavioral quiescence largely controlled by neuropeptide signaling from the ALA and RIS sleep interneurons. Here, we tested whether egg retention and/or production which occurs during suboptimal environmental conditions, is regulated by the ALA and/or RIS, or other neuropeptides. We find that during stress-induced sleep, worms reduce egg-laying behavior and egg production (i.e., fertility). While the behavior is modestly modified in the absence of the ALA and RIS, as well as some neuropeptides, fertility is regulated by other mechanisms. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Sleep is ancient and genetically conserved across phylogeny. Neuropeptide signaling plays a fundamental role in the regulation of sleep for mammals, fish, and invertebrates like Caenorhabditis elegans. Developmentally timed-sleep and stress-induced sleep of C. elegans are controlled by distinct and overlapping neuropeptide pathways. The RPamide neuropeptides nlp-2, nlp-22, and nlp-23, play antagonistic roles during the regulation of developmentally-timed sleep, however, their role in stress-induced sleep has not been explored. These genes are linked on the X chromosome, which has made genetic analyses challenging. Here we used CRISPR to generate new alleles of nlp-22 and nlp-23, nlp-22;nlp-23 double mutants, and nlp-2;nlp-22;nlp-23 triple mutants. Confirming previous studies, we find that nlp-22 is required for developmentally-timed sleep, and show that nlp-23 is also required. However, all three genes are dispensable for stress-induced sleep. 
    more » « less
  3. Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans. 
    more » « less